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Abstract
The magnetic properties of SrCu2(BO3)2 are reviewed from a theoretical
point of view. SrCu2(BO3)2 is a new two-dimensional spin gap system and
its magnetic properties are well described by a spin-1/2 antiferromagnetic
Heisenberg model of the orthogonal dimer lattice. The model has a dimer
singlet ground state whose exactness was proven by Shastry and Sutherland
for a topologically equivalent model more than 20 years ago. The exactness
of the ground state is maintained even if interlayer couplings are introduced
for SrCu2(BO3)2. In the two-dimensional model, quantum phase transitions
take place between different ground states for which three phases are expected:
a gapped dimer singlet state, a plaquette resonating valence bond state and a
gapless magnetic ordered state. Analysis of the experimental data shows that the
dimer singlet ground state is realized in SrCu2(BO3)2. The orthogonality of the
dimer bonds, which is the underlying symmetry of the exactness of the ground
state, also leads to an unusual property of elementary excitations, namely the
almost localized nature of the triplet excitations. Application of an external
magnetic field changes the density of the triplet excitations. In general, there is
competition between kinetic energies and interaction energies between triplets.
The almost localized nature of the triplets makes it easy to form regular lattices.
In fact, at certain densities, where the commensurability energy is significant,
the triplet excitations form superstructures and plateaux appear at 1/2, 1/3,
1/4 and 1/8 in the magnetization curve. In high-magnetic-field experiments,
magnetic plateaux at magnetizations of 1/3, 1/4 and 1/8 have been observed.
Translational symmetry of the lattice is spontaneously broken at the plateaux,
except for the 1/2 plateau. The 1/3 and 1/4 plateaux are expected to have
magnetic superstructures of stripe form while the 1/2 plateau has a square unit
cell and the 1/8 plateau a rhomboid cell. Especially at the 1/8 plateau, nuclear
magnetic resonance experiments indicate the presence of at least 11 distinct Cu
sites with different spin polarizations, which is the first evidence of breaking
of the translational symmetry at the plateau phase. The spin texture calculated

0953-8984/03/090327+40$30.00 © 2003 IOP Publishing Ltd Printed in the UK R327

http://stacks.iop.org/JPhysCM/15/R327


R328 Topical Review

on the basis of a Heisenberg model with adiabatic spin–phonon coupling is
consistent with the experimental results.
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1. Introduction

Low-dimensional quantum spin systems are one of the hot topics in present-day condensed
matter physics, both experimentally and theoretically [1–3]. In such a system the effects of
quantum fluctuations are important; owing to them, particularly in systems with geometrical
frustration, a gapped spin-singlet ground state may appear. In general there is competition
between such a nonmagnetic ground state and a magnetically ordered state, which is expected
from classical theories. The order–disorder transition, which may be tuned by changing some
parameter of quantum spin systems, is one of the simplest possible examples of a quantum
phase transition phenomenon.

As a well-known example of a quantum phase transition, let us consider the spin-1/2
zig-zag chain Heisenberg model, which is shown in figure 1 [4]. It has been shown that for
J2/J1 > 0.2411 the ground state is nonmagnetic and has a spin gap [5]. On the other hand, the
model has quasi long-range order for J2/J1 < 0.2411. Therefore a quantum phase transition
takes place from the gapped state to the gapless state at J2/J1 = 0.2411 with increase in the
parameter J2/J1.

It should be emphasized that at J2/J1 = 0.5, the nonmagnetic ground state is known
exactly:

� =
∏

a

1√
2
(|↑↓〉a − |↓↑〉a). (1)

Here a denotes one type of nearest-neighbour bonds, for example A-dimers (see figure 1). The
model with J2/J1 = 0.5 is called the Majumdar–Ghosh model after the people who discovered
the exact ground state of equation (1) [4].
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Figure 1. Zig-zag chain model. This consists of two types of bond: nearest-neighbour bonds J1
and next-nearest-neighbour bonds J2. Let us define the J1 bonds marked by ellipses as A bonds
and the other J1 bonds as B bonds. The product of the singlet states on A bonds or B bonds is the
exact ground state for J2/J1 = 0.5.

Because of these nontrivial quantum phenomena, low-dimensional quantum spin models
whose ground states have a spin gap, like the zig-zag chain model,have been studied extensively
from both experimental and theoretical points of view. In particular, many investigations on
two-dimensional systems with spin gaps have been carried out, stimulated by the pseudo spin
gap behaviours observed in high Tc cuprates. As by-products of this type of investigation,
several new spin gap systems have been found. Some of the examples include the coupled spin
ladder systems, SrCu2O3 [6], CaV2O5 [7] and the plaquette resonating-valence-bond system,
CaV4O9 [8].

Another example of nontrivial quantum phenomena in low-dimensional spin systems
is the presence of intermediate plateaux in the magnetization curve. The investigation of
magnetization plateaux started theoretically for one-dimensional spin systems, for example a
spin-1/2 ferromagnetic–ferromagnetic–antiferromagneticHeisenberg chain [9, 10] and spin-1
antiferromagnetic Heisenberg chain with bond alternation [11, 12]. A necessary condition for
the existence of plateaux in one-dimensional systems was obtained by Oshikawa et al [13].
They conclude that the occurrence of a magnetization plateau is possible when the following
condition is satisfied:

n(S − m) = integer, (2)

where n is the period of the ground state in the field, S is the magnitude of the spin and m is
the magnetization per site in units of gµB. It is worth mentioning that n can be different from the
period of the lattice. In this case, symmetry breaking is introduced at the magnetization plateau.
However, most of the theoretical models considered so far in one dimension are cases without
breaking of the translational symmetry [9–12]. To our knowledge, the first example where the
ground state at plateau breaks the symmetry is the S = 1/2 Heisenberg model chain with next-
nearest-neighbour and alternating nearest-neighbour interactions [14, 15]. In experiments,
several one-dimensional spin systems have been synthesized [16–19]. One of them
[Ni2(Medpt)2(µ-ox)(µ-N3)]ClO4·0.5H2O (Medpt = methyl-bis(3-aminopropyl)amine) is
considered to be a realization of the S = 1 antiferromagnetic chain with bond alternation [20].
Actually a magnetization plateau is observed as predicted by theoretical calculations [11, 12].
However, this is an example of a case without breaking of the translational symmetry. So
far, a plateau accompanied by symmetry breaking does not seem to have been found in one-
dimensional materials.

Recently Kageyama et al [22] rediscovered a new two-dimensional spin gap system
SrCu2(BO3)2 [21]. The magnetic properties of this compound are carried by Cu2+ ions which
may be well represented by localized spins of S = 1/2. The network of Cu2+ ions has a
structure for which strong frustration effects are expected. In fact, this material shows various
unique features:
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Table 1. Spin gap � estimated from various experiments (NQR, nuclear quadrupole resonance;
NMR, nuclear magnetic resonance; ESR, electron spin resonance).

Method Spin gap

Magnetic susceptibility [23] 34 ± 1 K
Cu NQR, T1 [22] 30 K
Magnetization curve [23] 22.5 T (31.3 K)
Cu NMR, Knight shift [29] 35 K
B NMR, T1 [29] 36 K
Specific heat [30] 35.0 K
ESR [31] 722 GHz (34.7 K)
Neutron scattering [24] 3.0 meV (35 K)
Raman scattering [32] 24.5 cm−1 (35.2 K)
Far infrared spectroscopy [33] 24.2 cm−1 (34.8 K)

(i) Spin-gapped behaviour. The temperature dependence of the magnetic susceptibility is
shown in figure 2 [23]. It has a maximum at around 20 K and rapidly drops toward
zero with decreasing temperature. This suggests the existence of a spin gap. Kageyama
et al [23] estimate the value of the spin gap to be � = 34 ± 1 K based on the fit to the
isolated dimer model below 6 K. In addition to that,various experiments show the evidence
that SrCu2(BO3)2 has the spin gap � ∼ 35 K (table 1). Therefore it is experimentally
confirmed that the ground state of this material is nonmagnetic.

(ii) Unusual excitations. The lowest branch of magnetic excitations has an almost localized
nature, as will be explained in section 4. This character is observed as an almost flat
dispersion in an inelastic neutron scattering experiment [24]. On the other hand, higher-
energy excitations observed in neutron scattering experiments have a dispersive character.
These excitations are also observed in electron spin resonance (ESR), Raman scattering
and far infrared spectroscopy (see table 3 in section 4.2).

(iii) Magnetization plateaux. High-field magnetization measurements have been performed
and 1/3, 1/4 and 1/8 plateaux are observed [22, 25]. The results up to 69 T at
1.4 K are shown in figure 3 [26]. Symmetry breaking is expected at each plateau
from theoretical studies (see section 6). Oshikawa has extended the argument in [13]
to arbitrary dimensions and it is shown that the necessary condition for plateau (2) is still
valid in arbitrary dimensions [27]. In fact, the plateaux theoretically obtained for the
model of SrCu2(BO3)2 satisfy the condition (2). Recently Kodama et al [28] have done a
nuclear magnetic resonance (NMR) measurement up to 27 T and actually observed several
nonequivalent spin sites existing at the 1/8 plateau. To our knowledge, SrCu2(BO3)2 is
the first example of a two-dimensional material in which the ground state at plateau has a
symmetry breaking.
Note that, in figure 3, even below the critical field, which is around 23 T, the magnetization
is finite. Experimentally, it was checked that reducing the temperature does not affect the
finite magnetization. Its origin is not yet clear.

Since the discovery of SrCu2(BO3)2, many studies have been made by both experimentalists
and theorists to elucidate these rich unusual magnetic properties.

In this article we review the development of research on SrCu2(BO3)2 at the present stage
from the theoretical point of view. This review is organized as follows. Firstly its crystal
structure is shown and the orthogonal dimer model is presented. After that the ground state
properties of this model are discussed in section 3. It has an exact dimer singlet ground state
in some parameter ranges. The quantum phase transitions of the model are also discussed.
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Figure 2. The temperature dependence of the magnetic susceptibility (solid curve). Circles are
the result of numerical calculation with the optimal parameter set (see section 5). The inset is the
result of fitting by an isolated dimer model.
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Figure 3. The magnetization curve for SrCu2(BO3)2 at 1.3 K. The magnetic field is applied along
the c-axis. 1/3, 1/4 and 1/8 plateaux are observed (reproduced from [26]).

In section 4, excited states are treated. The lowest branch of triplet excitations has an almost
localized nature. On the other hand, two triplet excitations make a bound state and the combined
excitations hop in the lattice more easily than the single triplet excitations. An estimation of
the parameters of the model is made by comparing various quantities with experiments in
section 5. The analysis indicates that the parameter set for SrCu2(BO3)2 lies in the region
where the exact ground state is realized. Finally, in section 6, properties of SrCu2(BO3)2 in an
external magnetic fields are discussed. In a magnetic field some of the singlets are promoted
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Figure 4. (a) Schematic view of the crystal structure of a CuBO3 layer. Full circles represent Cu
sites. Big open circles are O sites and small open circles B sites. The dotted line shows the unit
cell (reproduced from [22]). (b) Two-dimensional orthogonal dimer model, which is equivalent to
(c) the Shastry–Sutherland model. Below Ts = 395 K, a buckling of the CuBO3 plane is observed.
Dimers shown by white (black) dumbbells make a flat plane and the two planes are slightly shifted
from each other.

to the triplet states. Because of their almost localized character, crystallization of triplets takes
place at certain magnetizations, which leads to magnetization plateaux. In these plateaux,
except for the 1/2 plateau, the symmetry of the ground state is lower than the symmetry
of the original Heisenberg model. We discuss the possible superstructures at each plateau.
Conclusions are summarized in section 7.

2. Orthogonal dimer models for SrCu2(BO3)2

2.1. Crystal structure

The crystal structure of SrCu2(BO3)2 is tetragonal and is characterized by a layered structure of
CuBO3 and Sr planes [21, 22, 34]. At room temperature, the lattice constants are a = 8.995 Å
and c = 6.649 Å. A sketch of a CuBO3 layer is shown in figure 4(a). In this layer BO3

molecules make a triangle and Cu2+ ions are connected through the BO3 molecules. All Cu2+

ions are located at crystallographically equivalent sites and have a spin S = 1/2. Each Cu2+

ion has one nearest-neighbour Cu2+ ion and four next-nearest-neighbour Cu2+ ions in the
plane. The two-dimensional linkage of the Cu2+ ions is illustrated in figure 4(b). A pair of
nearest-neighbour Cu2+ ions connected through O sites, which are vertices of BO3 triangles,
form a dimer unit. The dimer units are connected orthogonally through BO3 molecules. The
distance between the nearest-neighbour Cu2+ ions is 2.905 Å, and that between the next-
nearest-neighbour Cu2+ ions is 5.132 Å at room temperature. A buckling of the CuBO3 plane
is observed below 395 K. The unit cell in the layer contains two types of dimer (white and
black dumbbells in figure 4(b)) which are mutually orthogonal. One type of dimer makes a flat
plane and the two planes are slightly shifted from each other. Projection of the dimer bonds
along [110] at 100 K is illustrated in figure 5(a).

At Ts = 395 K, a structural phase transition from the space group I 4̄ 2 to I 4/m c m (both
are tetragonal) has been observed by x-ray diffraction. Anomalies at Ts have been observed
by Raman scattering, temperature dependence of the magnetic susceptibility, and differential
scanning calorimetry measurements [34]. Above Ts , two dimers in the unit cell lies on the
same plane (figure 5(b)) and there is no buckling of the CuBO3 plane. Therefore the CuBO3

plane is a mirror plane.
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Figure 5. (a) A sketch of the projection of the dimer bonds along [110] at 100 K. There is a buckling
of the CuBO3 plane. Two types of interlayer interactions J ′′

1 , J ′′
2 exist. (b) A sketch at 433 K. The

CuBO3 plane is a mirror plane.

The existence of a mirror plane is important for Dzyaloshinsky–Moriya interactions.
Above Ts , the Dzyaloshinsky–Moriya interactions may exist only for the next-nearest-
neighbour pairs and do not exist for the nearest-neighbour pairs since the middle of a nearest-
neighbour bond is an inversion centre. On the other hand, below Ts , the mirror plane is lost.
Therefore not only Dzyaloshinsky–Moriya interactions on the next-nearest-neighbour pairs
but also those on nearest-neighbour pairs can exist. However, since the magnitude of the shift
is small, the Dzyaloshinsky–Moriya interaction which exists above Ts may be considered to
be the most important and other components may be ignored.

2.2. Two-dimensional orthogonal dimer model

The nearest-neighbour Cu2+ ions are connected through O2− ions, where the bridging angle
Cu–O–Cu is 102.42◦ at room temperature, and therefore it is reasonable to assume that the
intradimer exchange interaction J is antiferromagnetic. From the crystal structure shown in
figure 4(a), one may expect that the magnetic properties of SrCu2(BO3)2 would be explained
approximately by the isolated dimer. However, this model cannot describe the peculiar
magnetic behaviour of this material, for example the presence of magnetization plateaux.
Also the temperature dependence of the magnetic susceptibility of the isolated dimer model,
where the unique parameter J is given by the magnitude of the spin gap of 35 K, is very
different from the experimental results shown in the inset of figure 2: the observed peak is
significantly suppressed [22]. The difference comes from the relatively large Curie–Weiss
constant compared with the spin gap. The Curie–Weiss constant θ = 102.5 K is estimated
from fitting in the temperature range between 250 and 350 K [23]. This fact indicates the
existence of a frustrated antiferromagnetic coupling J ′.

Thus a two-dimensional Heisenberg model with the nearest-neighbour coupling J and the
next-nearest-neighbour coupling J ′,

H = J
∑
nn

si · s j + J ′ ∑
nnn

si · s j , (3)

may be a good model for the magnetic properties of SrCu2(BO3)2 (figures 4(b) and 6(a)). As
we will show below, it describes well various magnetic properties of SrCu2(BO3)2. In this
model, the orthogonality between the two nearest-neighbour dimers plays an important role,
as will be discussed below, and therefore we call it orthogonal dimer model [35]. The model
is topologically equivalent to the Shastry–Sutherland model (shown in figure 4(c)). Shastry
and Sutherland constructed the model in such a way as to realize an exact ground state [36].
Therefore the original Shastry–Sutherland model looks very artificial and it seems almost
impossible to find a real material whose structure is represented by it. In fact, it took almost
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Figure 6. (a) Two-dimensional orthogonal dimer Heisenberg model. The lattice constant a is
shown by arrows. Also shown are clusters for Ns = 16, 20, 24, 32 (dashed lines). (b) A unit bond
for the orthogonal dimer model.

20 years to find a material which is a realization of the Shastry–Sutherland model. In this
review, we use two names distinctively. In most cases we use the name ‘the orthogonal dimer
model’. However, when we use the name ‘Shastry–Sutherland model’, we imagine the square
lattice structure with the diagonal bonds. Note that in the orthogonal dimer model the nearest-
neighbour interaction is J , however, in the Shastry–Sutherland model, the nearest-neighbour
interaction is J ′.

2.3. Three-dimensional orthogonal dimer model

The three-dimensional structure of SrCu2(BO3)2 consists of CuBO3 layers and Sr layers as
mentioned before. Above Ts , the CuBO3 layers stack alternately and the magnetic ions of the
CuBO3 layers form a three-dimensional lattice structure shown in figure 7 [37], which may be
represented by

H = J
∑
nn

si · s j + J ′ ∑
nnn

si · s j + J ′ ∑
il

si · s j . (4)

In addition to the intraplane interactions J and J ′, an interlayer interaction J ′′ is introduced.
The Cu2+–Cu2+ distance for the J ′′ bond is shorter than that of the next-nearest-neighbour
bond in each plane. However, we expect that J ′ is much bigger than J ′′ since the dominant
path of the super-exchange of J ′ is through the molecular orbital of BO3 and, on the other
hand, the Sr2+ ion has a closed shell.

Below Ts , there is a buckling in the CuBO3 plane and thus the distances between Cu2+ ions
of the adjacent dimers are 3.593 or 4.233 Å at room temperature. In this way, strictly speaking,
there are two types of interlayer coupling: J ′′

1 and J ′′
2 (see figure 5). However, the difference

hardly affects the magnetic properties of SrCu2(BO3)2, as will be shown in sections 3.1.2, 4.1
and 5. For simplicity we will use the same coupling constant for both.
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Figure 7. (a) Three-dimensional orthogonal dimer model for SrCu2(BO3)2. (b) A configuration
of orthogonal dimers along the c direction.

3. Ground states of orthogonal dimer models

3.1. Exact dimer singlet ground state

3.1.1. Two-dimensional orthogonal dimer model for SrCu2(B O3)2. The most remarkable
property of the Hamiltonian (3) is that the direct product of the singlet states on J bonds

|�〉 =
∏

a

|s〉a =
∏

a

1√
2
(|↑↓〉a − |↓↑〉a) (5)

is always an eigenstate. In the above equation, a denotes a nearest-neighbour bond. In the
case J ′ = 0, obviously it is a ground state with energy Eg/Ns = −3/8 J and spin gap J
and therefore it is expected that equation (5) is the ground state for J ′/J � 1. The exact
ground state was pointed out first by Shastry and Sutherland over 20 years ago [36, 38]. The
exact dimer singlet state is also realized in a zig-zag spin chain model but this is true only at
the fully frustrated point J1 = 2J2 [4]. Another difference between the present case and the
Majumdar–Ghosh model is that the translational symmetry is broken in the latter case while it
is preserved in the former.

The proof for the exact eigenstate is simple. Let us consider the effect of the second term
of the Hamiltonian (3), since the wavefunction (5) is an eigenstate, actually the ground state,
of the first term. It is easy to show by elementary calculations that for any neighbouring pair
of the nearest-neighbour bonds a ket to which operator H′

ab is applied vanishes:

H′
ab|s〉a|s〉b = 0. (6)

To be explicit, H′
ab = J ′(s1 ·s3 +s2 ·s3) where the site indices are defined in figure 6(b). Note

that the vanishing of the ket is due to the difference in parity between the singlet and the triplet,
odd and even, with respect to the reflection which exchanges the two spins s1 ↔ s2. For the
orthogonal configurations the Hamiltonian conserves the parity. On the other hand when a spin
operator is applied to a singlet, a finite matrix element is possible only for some component
of the triplet. These requirements are in contradiction. Therefore all matrix elements should
vanish.

Next let us prove that equation (5) is the ground state for some parameter range. Here we
follow the method used by Shastry and Sutherland [36]. The Hamiltonian (3) can be considered
as a sum of triangles, which are written as Ht = J/2(s1 · s2) + J ′(s1 · s3 + s2 · s3). The
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Figure 8. One-dimensional orthogonal dimer model with interdimer couplings J ′ (reproduced
from [37]).

ground state energy of each triangle is et = −3/8 J for J ′/J � 0.5 and et = J/8 − J ′ for
J ′/J � 0.5. By using these results, the ground state energy is estimated as et Nt , where Nt is
the number of triangles. Since the ground energy et Nt is estimated by a variational calculation,
the actual ground state energy of the Hamiltonian (3) Eg satisfies the condition et Nt � Eg .
For J ′/J � 0.5, et Nt is equal to the eigenvalue of the eigenstate (5). Thus the state (5) is the
ground state in this parameter range. On the other hand, for J ′/J > 0.5, the model has not
been solved exactly. This fact indicates that the real phase transition point should be bigger
than (J ′/J )c = 0.5. In fact, a series expansion calculation by Koga and Kawakami [39] gives
the phase transition point (J ′/J )c = 0.68. Details of the estimation of the phase transition
point (J ′/J )c will be discussed in section 3.2.1.

3.1.2. Three-dimensional orthogonal dimer model for SrCu2(B O3)2. A three-dimensional
model for SrCu2(BO3)2 is written as equation (4) [37]. In this model, the dimer singlet state (5)
is still an eigenstate since the kets to which operators for interlayer coupling J ′′ are applied
vanish:

J ′′(s1 + s2) · (s3 + s4)|s〉a|s〉b = 0 (7)

where the site indices are shown in figure 7(b). It is clear that the dimer singlet state is
the ground state for small J ′/J and J ′′/J . This result remains true even if we include the
alternation along the c-axis: J ′′

1 and J ′′
2 (see figure 5(a)).

It is expected that the interlayer interactions are smaller than J and J ′ and the two-
dimensional orthogonal dimer model is a good starting point for SrCu2(BO3)2. However,
the exactness of the dimer singlet ground state for the three-dimensional model is one of the
reasons why magnetic properties of SrCu2(BO3)2 are well described by the two-dimensional
model.

3.1.3. A class of orthogonal dimer models with an exact dimer singlet ground state. So far
several orthogonal dimer models have been considered in the literature. In such a model, the
exact dimer singlet ground state (5) may be realized because of the orthogonality of the dimer
bonds. In this section, we will discuss a class of orthogonal dimer models which are related
to SrCu2(BO3)2.

We start our discussion with two examples in one dimension. The one-dimensional version
of the orthogonal dimer model considered for SrCu2(BO3)2 is shown in figure 8, where the
bonds denoted by the thick solid lines define a unique covering of the spins and the broken
lines are the bonds connecting dimers. We use J for the coupling constant in the dimers and
J ′ for the interdimer couplings. For this model the dimer singlet state is an exact eigenstate
for any J ′/J and the ground state for small J ′/J [37, 40, 41]. This is easily proven from
equation (6). The result holds independent of the magnitude of the spin, S. For example, the
ground states for arbitrary S are studied by Koga and Kawakami [42].

In the model of figure 8, the neighbouring dimers are orthogonal but in the same plane. On
the other hand, another one-dimensional Heisenberg model with the exact dimer ground state
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Figure 9. One-dimensional orthogonal dimer model with inter dimer couplings J ′′. The model is
topologically equivalent to the spin ladders with diagonal couplings (reproduced from [37]).

may be constructed by making one type of dimer out of the plane (figure 9). The bonds between
the orthogonal dimers of this type are defined as J ′′ bonds in figure 9. As shown in figure 7(a),
in SrCu2(BO3)2 the dimers along the c-axis are coupled as in this model. It is straightforward
to confirm that all matrix elements of the J ′′ bonds vanish as already discussed (equation (7)).
The present model is topologically equivalent to the spin ladders with the diagonal couplings
of the same amplitude to the couplings of the legs discussed in [37, 43].

It is obvious that any combination of the two types of orthogonal dimer may have the dimer
singlet state as the exact eigenstate. This is still possible in two- or three-dimensional models
as long as the neighbouring dimers are orthogonal [37, 44, 45]. For example, the regularly
depleted orthogonal dimer models [37] and two types of three-dimensional orthogonal dimer
model [44, 45], whose lattices are different from that for SrCu2(BO3)2, have been considered.
The lattice structures of each model are shown in these references.

Another type of model is possible with even longer-range interactions. For example, the
two-dimensional orthogonal dimer model with the interaction J3rd shown in figure 6(b) was
proposed by Weihong et al [46] and Müller-Hartmann et al [47] and it also has the exact dimer
singlet ground state for small J ′ and J3rd.

3.2. Quantum phase transitions of the orthogonal dimer models

3.2.1. Two-dimensional orthogonal dimer model. In this section we discuss quantum phase
transitions of the two-dimensional Shastry–Sutherland model. For small J ′/J , the exact dimer
singlet state discussed in the previous section is the ground state. It has a spin gap and does not
have long-range order. On the other hand, given J = 0 and J ′ 
= 0, the model is equivalent to
a two-dimensional square lattice Heisenberg model (see figure 4(c)). For the two-dimensional
Heisenberg model, there is a consensus that the ground state has antiferromagnetic long-range
order and no spin gap [48]. It means that the antiferromagnetically ordered state should be
the ground state for some parameter J ′/J � 1. In addition to these two states, the possibility
of the existence of other states between the dimer singlet state and the antiferromagnetically
ordered state was pointed out [39, 49]. Motivated by these works, several subsequent works
have been published. The proposed phase transition points are summarized in table 2. Initially,
a direct phase transition from the dimer singlet state to the antiferromagnetically ordered state
was proposed [35, 46]. But recent works favour the possibility of an intermediate phase,
which is now thought likely to exist. At this stage, two possible intermediate phases have been
proposed: helical order [49, 50] and plaquette resonating-valence-bond [39, 51, 52].

(1) Helical ordered state. As discussed by Shastry and Sutherland, it is known that in the
classical limit, when S → ∞, the ground state has helical order for J ′/J > 1 and Néel order
otherwise (details for the classical case are discussed in [36, 49]). Therefore it may seem
natural to expect a helical ordered ground state even for S = 1/2. From such a point of view,
Albrecht and Mila studied the stability of the helical ordered state [49]. They have investigated
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Table 2. Phase boundary points calculated by several theories. A dash means that there is no
intermediate phase transition. The phase transition is also discussed in [50] (large-N limit of
the Sp(N ) Shastry–Sutherland model) and [53] (field theory approach for generalized Shastry–
Sutherland models). Since the model is generalized in both methods, we have not included their
results in the table.

Main method (J ′/J )c1 (J ′/J )c2 Intermediate phase

Variational method [36] 0.5 — —
Schwinger boson mean field theory [49] 0.6 0.9 Helical ordered state
Exact diagonalization (up to 20 sites) [35] 0.70(1) — —
Ising expansion [46] 0.691(6) — —
Dimer expansion [47] 0.697(2) — —
Plaquette expansion [39] 0.677(2) 0.86 Plaquette singlet
Series expansion [54] 0.69 0.83 or — Columnar or —
Exact diagonalization (up to 32 sites) [52] 0.67 Bigger than 0.71 Plaquette singlet

the stability of both the helical and the Néel ordered states by Schwinger boson mean-field
theory.

In the Schwinger boson mean-field theory, the spin operators si are replaced by
bosonic operators b†

iσ σσσ ′biσ ′/2 with a constraint on the number of particles on each site
b†

i↑bi↑ + b†
i↓bi↓ = 2S to fix the size of the spin. The Hamiltonian (3) is rewritten by using the

bosonic operators 2A†
i j = b†

i↑b†
j↓ + bi↓b j↑ and 2B†

i j = b†
i↑b j↑ + b†

i↓b j↓:

H =
∑
(i, j)

Ji j(:B
†
i j Bi j : − A†

i j Ai j), (8)

where :A: is a normal ordered operator in which annihilation operators are moved to the
right. Introducing the order parameters αi j = 〈A†

i j 〉/2 and βi j = 〈B†
i j〉/2, the Hamiltonian at

mean-field level is written:

HM F =
∑
(i, j)

Ji j(βi j(Bi j + B†
i j) − αi j (Ai j + A†

i j) − β2
i j + α2

i j ) (9)

+ µ
∑

i

(b†
i↑bi↑ + b†

i↓bi↓ − 2S). (10)

The last term (equation (10)) with chemical potential µ is added to satisfy the local constraint,
which is replaced by a global one in the present scheme, and plays the role of a Lagrange
parameter. To treat the helical ordered state one has to multiply each Bose operator by a phase
factor exp(iQ · ri/2), where Q is the pitch of the helix. The order parameters are given by

αi j = exp(−iQ · ri/2)〈b†
i↑b j↑〉 + exp(iQ · ri/2)〈b†

i↓b j↓〉, (11)

βi j = exp(iQ · ri/2)〈bi↑b j↓〉 − exp(−iQ · ri/2)〈bi↓b j↑〉, (12)

2S = 〈b†
i↑b j↑〉〈b†

i↓b j↓〉. (13)

These equations define a system of self-consistent nonlinear equations for αi j and βi j since the
expectation values 〈b†

iσ b jσ 〉 and 〈biσ b jσ 〉 can be calculated from equation (10). Long-range
order is described by a Bose condensation. The solutions of these equations for an arbitrary
value of Q and a given value of S lead to an excitation spectrum which is gapless at three points
of the Brillouin zone located at k = (Q−Q0)/2 and (Q−Q0)/2 ±Q0, where Q0 depends on
S and J/J ′ but not on Q. By choosing Q = Q0, a solution with a Goldstone mode at k = 0 is
obtained. By looking at the solution of the mean-field equations, where the Bose condensation
occurs and the excitation spectrum is softened, the critical value for the magnitude of spin S
is given. The results are shown in figure 10. The transition between Néel and helical order is
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Figure 10. Phase diagram obtained by the Schwinger boson mean-field theory and the linear
spin-wave theory. In this figure J1 and J2 mean J ′ and J (reproduced from [49]).

a second-order transition and the phase transition point for S → ∞ is consistent with that of
the classical model.

Recent gauge-theoretic analysis of the Shastry–Sutherland lattice with Sp (2N) symmetry
in the large N limit also indicates the existence of the helical order state as the intermediate
phase; details of the calculation are discussed in [50].

Finally, we mention the results of the linear spin wave theory. In many cases, the spin
wave theory gives a reasonable result when the ground state is magnetically ordered. In fact,
Albrecht and Mila studied the stability of the ordered state using it (results are in figure 10).
However, it has turned out that the helical phase is unstable for any finite but arbitrary large
value of S, in contradiction to the results of the classical limit. That is the reason why they
used the Schwinger boson mean field theory. The details of the linear spin wave theory and
the reason for the instability of the helical order using this method are discussed in [49].

(2) Plaquette singlet state. Let us discuss another possible intermediate phase: the plaquette
singlet state. Here we follow the argument presented by Koga and Kawakami [39]. The
Hamiltonian on the Shastry–Sutherland lattice may be divided into three parts (figure 11(a)):

H = J
∑
〈nnn〉

si · s j + J ′
1

∑
〈nn〉′

si · s j + J ′
2

∑
〈nn〉′′

si · s j , (14)

where 〈nn〉′ (〈nn〉′′) means that the sum runs over on the nearest-neighbour sites presented
by the thin (dashed) lines in the figure. The lattice is invariant under the exchange of J ′

1
and J ′

2. Therefore only the case J ′
1 � J ′

2 is discussed. As shown in figure 11, the Shastry–
Sutherland model is topologically equivalent to the 1/5-depleted square lattice, which was
used for CaV4O9 [55, 56].

In this generalized model, Koga and Kawakami analysed the ground state properties
based on the plaquette expansion, where the J ′

1 term is the unperturbed part and the J and
J ′

2 terms are treated as perturbations. The ground state of the unperturbed Hamiltonian is the
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Figure 11. Two-dimensional system with plaquette structure. Thick, thin, dashed lines represent
the coupling constants J , J ′

1 and J ′
2 in equation (14). (a) On the Shastry–Sutherland lattice. (b) On

the 1/5-depleted square lattice. Letters correspond to the equivalent plaquette on each lattice.

product of plaquette singlets with a spin gap. They calculated the staggered susceptibility
χAF , the spin gap energy � at k = (0, 0) and the ground state energy Eg as a power series
in J and J ′

2, where the ratio J ′
2/J was kept as a constant value α. The Zeeman term under

the staggered magnetic field was introduced to calculate the staggered susceptibility. The
staggered susceptibility and the spin gap up to fourth and fifth order in J and J ′

2 have been
calculated for various values of α. Using Padé approximants (both the Dlog and the biased
Padé approximants), the phase transition points between the gapless magnetically ordered
state and the gapped disordered state (plaquette singlet state) are estimated and results are
shown in figure 12. Here the critical values of J ′

2/J ′
1 are determined by using the formula

χAF ∼ ((J ′
2/J ′

1)c − J ′
2/J ′

1)
γ and � ∼ ((J ′

2/J ′
1)c − J ′

2/J ′
1)

ν with the known values γ = 1.4 and
ν = 0.71 for the universality class of the three-dimensional classical Heisenberg model, to
which two-dimensional quantum spin models should belong [57]. For J ′

2/J ′
1 = 1, the critical

value (J ′/J )c2 = 0.86(1) is obtained from the spin gap determined by means of the biased
Padé approximants. This fact indicates that the Shastry–Sutherland model has a disordered
ground state in the region J ′/J < (J ′/J )c2. On the other hand, for small J ′/J , the ground
state on the Shastry–Sutherland model is described by the product of the dimer singlets. In this
phase, the dimer expansion indicates that the spin gap vanishes around J ′/J = 0.7 [46, 47],
which is smaller than (J ′/J )c2 = 0.86(1). This fact may point to the existence of a quantum
phase transition from the dimer singlet ground state to the plaquette singlet ground state.

Koga and Kawakami also calculated the ground state energy for the plaquette singlet
ground state by performing a plaquette expansion up to seventh order in J and J ′

2 keeping their
ratio J ′

2/J constant, and they estimated the ground state energy for the Shastry–Sutherland
model by the first-order inhomogeneous differential method. Comparison of the ground state
energy of the plaquette singlet state with that of the dimer singlet state energy −3/8J N gives the
critical point (J ′/J )c1 = 0.677(2). From the ground state energies obtained by the plaquette
and Ising [46] expansions, the phase transition point between the disordered state and the
ordered state (J ′/J )c2 is also estimated and the result is consistent with the value estimated
from the spin gap and staggered susceptibility.

Takushima et al [51] extended the series expansion of the Hamiltonian (14) for the general
case, which includes the 1/5-depleted square-lattice model, and they found that the resonating
plaquette singlet state of the Shastry–Sutherland model was adiabatically connected to the
plaquette phase known for the 1/5-depleted square-lattice model. In addition to that, they
performed the series expansion from the orthogonal dimer chain (figure 8) and showed that
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Figure 12. Phase boundary between the disordered and ordered state in the two-dimensional
spin system on Shastry–Sutherland lattice. Here α = J ′

2/J and λ = J ′
2/J ′

1. The line at
λ = 1 corresponds to Shastry–Sutherland model. The solid (dashed) curve is the phase boundary
estimated by a biased Padé approximation for the spin gap (the staggered susceptibility) (reproduced
from [39]).

the plaquette phase of the Shastry–Sutherland model was adiabatically connected also to the
plaquette phase of the orthogonal dimer chain. A recent calculation by Läuchli et al [52] using
the dimer- and quadrumer-boson methods in the Shastry–Sutherland lattice also indicates that
the intermediate state is connected to the plaquette phase of the 1/5-depleted square-lattice
model [52]. These authors also performed an exact diagonalization for a cluster up to 32 sites
and concluded in favour of the existence of the plaquette singlet state from the analysis of
spin–spin correlation function.

On the other hand, Weihong et al [54] proposed the possibility that the plaquette-singlet
phase is unstable. Their series expansion for the spin gap indicates that the minimum gap is no
longer at k = (0, 0) for J ′/J � 0.8 and J ′

2/J ′
1 ∼ 1 and their series expansion for J ′/J = 0.714

suggests that the spin gap �(π/4, 3π/16) vanishes at J ′
2/J ′

1 = 0.998. Comparing the ground
state energies calculated by series expansions, they concluded that the Néel ordered state or the
columnar state, as in the J1–J2 Heisenberg model, are possible ground states in the intermediate
phase. Although the ground state energies of the Néel state or the columnar state are lower
than that of the plaquette singlet state in their calculation, the difference is very small and the
results might be different if the order of the calculations is changed. Also, Knetter et al [58]
claimed that the instability of the two-magnon excitation might occur at J ′/J = 0.630(5)

and this would indicate a transition to another phase at much lower values of J ′/J than found
before. But it is not clear whether this is evidence for the existence of another phase.

So, there are still open questions regarding the intermediate phase of the Shastry–
Sutherland model but it seems to be reasonable to think that the disordered ground state,
probably the plaquette singlet state, is stabilized by geometrical frustration.

At present our picture of the ground state of the orthogonal dimer model is the
following. There may be three phases. The existence of the dimer singlet state and an
antiferromagnetically ordered state is established. The nature of the intermediate state in
this model still remains an open question. However, there is some evidence in favour of the
existence of the plaquette resonating-valence-bond state. The helical ordered state remains
a possibility based only on a crude approximation. To draw a definitive conclusion more
elaborate treatments are necessary.
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Figure 13. A phase diagram for the three-dimensional orthogonal dimer model. The circles
reveal the parameter sets proposed for SrCu2(BO3)2: J ′/J = 0.635 and J ′′/J = 0.09 [60] and
J ′/J = 0.603 and J ′′/J = 0.21 [58] (reproduced from [59]).

3.2.2. Three-dimensional orthogonal dimer model. The phase diagram for the three-
dimensional orthogonal dimer model (4) has been discussed only by the series expansion
methods [59]. Koga has done plaquette (figure 11), coupled two-leg ladders J ′ = 0 (figure 9),
and Ising expansions. The results are summarized in figure 13. The plaquette singlet phase (a
frustration-induced disordered phase) is destroyed by small interlayer couplings J ′′ in contrast
to the two-dimensional system.

As will be discussed in section 5, the estimated coupling constants for SrCu2(BO3)2

are J ′/J = 0.635 and J ′′/J = 0.09 [60]. These parameters show that SrCu2(BO3)2

is located in the dimer phase close to the phase boundary between the dimer phase and
the antiferromagnetically ordered phase. Substitutions of Ba or Ca ions for Sr ions or
measurements under various pressures have been tried with the hope that these effects might
change the interlayer couplings J ′′ and lead to the appearance of the antiferromagnetically
ordered phase [26, 61]. But so far such a phase transition has not been observed.

4. Excitations

In this section, excited states in SrCu2(BO3)2, i.e. excitations from the dimer singlet ground
state, are discussed. The most significant feature of a triplet excitation is its almost localized
character, which leads to the appearance of magnetization plateaux (see section 6). On the other
hand, the bound states of two triplet excitations can move much more easily than an isolated
triplet. These facts explain the unusual properties of the excitations observed in inelastic
neutron scattering experiments and other methods.

4.1. The almost localized nature of a triplet

Let us consider the spin gap in the dimer singlet phase by using the perturbation theory
(J ′/J < 1) [35]. The spin gap up to the fourth-order correction is given by

� = J

(
1 −

(
J ′

J

)2

− 1

2

(
J ′

J

)3

− 1

8

(
J ′

J

)4)
. (15)

One can show that up to the fifth order, the triplet excitation is completely localized.
This unusual behaviour is understood by considering the kets for triplet excitations to which

operators are applied. To be explicit we consider the elementary unit shown in figure 6(b).
There are two cases: a triplet is either on the vertical bond a or the horizontal bond b. The
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Figure 14. One of the lowest-order hopping processes of a triplet excitation. The triplet excitations
hop to the next-nearest-neighbour dimer in sixth order of the perturbation.

matrix elements for the former case are

H′
ab|tm〉a|s〉b = J ′

2
|tm〉a|t0〉b − J ′

2
|t0〉a |tm〉b (m = ±1), (16)

H′
ab|t0〉a|s〉b = J ′

2
|t1〉a|t−1〉b − J ′

2
|t−1〉a|t1〉b, (17)

where H′
ab = J ′(s1 · s3 + s2 · s3) and the site indices are shown in figure 6(b). |tm〉 represents

an Sz = m triplet state. It is important to note that when a triplet moves to neighbouring bonds,
it leaves another triplet behind because the parity on bond a is conserved from the reflection
symmetry of the Hamiltonian (3). The next crucial observation is that all kets for the case
where a triplet exists on bond b vanish by symmetry due to parity with respect to the reflection,

H′
ab|s〉a |tm〉b = 0 (m = 0,±1). (18)

The above facts, equations (16)–(18), set a stringent constraint for the motion of a triplet:
hopping of the triplet is allowed only through forming a closed path of triplets. Otherwise,
a trail of motion of a triplet is left behind. The lowest-order hopping process starts from the
sixth order in the perturbation through such a closed path, as shown in figure 14.

The dispersion of the triplet excitation was calculated by series expansion [46, 58, 62] and
exact diagonalization [63]. The results for the optimal set of parameters for SrCu2(BO3)2 (see
section 5) with both methods are shown in figure 15 [63, 64]. Here the almost localized nature
of the triplet excitations is observed as an extremely narrow dispersion. In fact, such an almost
flat band has been observed by inelastic neutron scattering [24], in agreement with the results
of calculations. The band width estimated from the series expansion, 2.02 K (0.174 meV) [64],
is consistent with the value observed in experiment, 2 K (0.2 meV) [24]. The dispersion is a
minimum at k = (0, 0) and a maximum at k = (π, 0). Note that, as shown in figure 15, both
results are consistent with each other and this fact indicates that both series expansion and finite
size calculation are quite good approximations even for rather large parameters J ′/J = 0.635.

Finally, let us consider the effects of two possible small interactions to the spin gap. One is
the interlayer coupling J ′′ [60] and the other is the Dzyaloshinsky–Moriya interaction [65, 66].
These interactions may be small and may be treated by perturbation calculations. However,
they play important roles in explaining the fine structure of the excited triplets:

(1) Effect of the interlayer coupling. In the case when one singlet bond is transformed into a
triplet, the kets to which operators of the interlayer coupling J ′′ are applied vanish completely:

J ′′(s1 + s2) · (s3 + s4)|tm〉a|s〉b = 0 (m = 0,±1). (19)
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Figure 15. The dispersion relations for the excited states. The results of exact diagonalization
for J = 85 K, J ′/J = 0.635 and Ns = 24 are shown by open symbols. The active modes for
neutron scattering are presented by open circles [63]. The results of the inelastic neutron scattering
experiments are shown by full circles [24]. The solid line around 35 K is the result of the truncated
dimer expansion by Weihong et al [46]: J = 85 K and J ′/J = 0.635 are used.

Here the site indices are shown in figure 7(b). Thus the magnitude of the spin gap for the three-
dimensional model does not change from the two-dimensional one. The dispersion of the triplet
excitations is not modified, either. These facts mean that the properties of SrCu2(BO3)2 can
be well explained by using the two-dimensional orthogonal dimer model at low temperatures:
T < �, even in the presence of interlayer couplings.

There is an interaction effect in the case where triplets exist on both the a and b dimers in
figure 7(b). Such a case is possible only when more than one triplet is excited. So the interlayer
interaction J ′′ may affect the magnetic behaviours of SrCu2(BO3)2 at high temperatures T > �

or in high magnetic fields. In fact, to reproduce the temperature dependence of the magnetic
susceptibility at T > �, the inclusion of J ′′ is necessary [60].

(2) Effect of the Dzyaloshinsky–Moriya interaction. Anisotropic behaviour of the first excited
state, which depends on the direction of the external field, was observed by ESR [31] and
inelastic neutron scattering experiments [65]. A splitting of the spin gap energy was also
observed in these experiments. These behaviours are qualitatively and semiquantitatively
explained by considering the Dzyaloshinsky–Moriya interaction [65, 66]. Assuming that
the CuBO3 plane is a mirror plane, there is an inversion symmetry at the centre of the J
bonds and Dzyaloshinsky–Moriya interactions between nearest neighbours vanish. With this
assumption, a Dzyaloshinsky–Moriya interaction exists only on the J ′ bonds and the D vector
is perpendicular to the plane. The Hamiltonian for the Dzyaloshinsky–Moriya interaction term
is given by

HDM =
∑
nnn

D(sx
i s y

j − sy
i sx

j ). (20)
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Figure 16. The unit cell for SrCu2(BO3)2. The arrows define the directions from i site to j site
for the Dzyaloshinsky–Moriya interactions in Hamiltonian (20).

For this interaction it is necessary to define the direction from i to j for a pair i, j , which is
shown in figure 16.

Strictly speaking, in the real material at low temperatures (<395 K) the mirror symmetry
concerning the ab plane is lost [34]. As described in section 2.1, there is a buckling in the plane.
In this way, the other components of the Dzyaloshinsky–Moriya interaction exist. However,
the magnitude of the buckling is small and therefore these components might be neglected, or
at least expected to be smaller than those given by equation (20).

Following the argument by Cépas et al [65], let us start from the perturbation calculation
in the limit D/J � 1 and J ′ = 0, to see the effect of the Dzyaloshinsky–Moriya interaction.
In contrast to the case of next-nearest-neighbour interaction J ′, the triplet excitation with
Sz = ±1 can hop from the first-order of the perturbation. In the orthogonal dimer model,
there are two nonequivalent dimers, i.e. horizontal and perpendicular ones. The unit cell
contains one horizontal dimer and one vertical dimer. For a triplet excitation, the excitation
may sit either on the horizontal bond or the vertical bond. When Sz = ±1, there are matrix
elements of the Dzyaloshinsky–Moriya interaction between the two states. Using a Fourier
transformation, a 2 × 2 matrix is obtained,(

J ∓2iD f (q)

±2iD f (q) J

)
, (21)

where f (q) = cos(qxa/2) cos(qya/2). The dispersion of the two modes is written as
ω±

q = J ± 2D cos(qx a/2) cos(qya/2). On the other hand, the Dzyaloshinsky–Moriya
interaction has no effect on the Sz = 0 component of the triplet, so that its energy remains
equal to J . We notice that the effects of J ′ up to fifth-order can be easily included in the above
matrix in the case D/J � J ′/J < 1 by replacing J in the matrix (21) by the spin gap �,
because of the localized nature of the triplet. In that sense, the effects of J ′/J up to fifth-order
do not change the dispersion relations and so the results of the first-order perturbation of D
might be a good approximation even for relatively large J ′/J through the renormalization of J
by �. This fact is consistent with the results of numerical calculations on finite systems [65].

At q = 0, there are two upper modes with Sz = ±1, two lower modes Sz = ±1
and two Sz = 0 modes. A magnetic field parallel to the c-axis, H‖, splits the former two
modes into four branches. As shown in figure 17(a), this is consistent with the results of
ESR and inelastic neutron scattering experiments. The Dzyaloshinsky–Moriya interaction
also produces a splitting in a transverse magnetic field H⊥. Including the magnetic field H⊥,
the dispersions of the modes are rewritten as ω±

q = J ± √
4D2 f (q)2 + (g⊥µB H⊥)2, ω0

q = J .
These forms also describe the ESR results well [65] and are consistent with results of exact
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Figure 17. The magnetic field dependence of the triplet energies: (a) H‖c and (b) H‖a (reproduced
from [65]).
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Figure 18. One of the processes of the correlated hopping. The triplet excitation on bond c can
hop to bond b in the second-order perturbation (reproduced from [73]).

diagonalizations [66]. From the splitting of the first excited state at q = 0, the magnitude
of the Dzyaloshinsky–Moriya interaction is estimated to be D = 2.1 K (0.18 meV) [65] or
D = 1.7 K (0.15 meV) [66].

4.2. Bound states of two triplets

In some of the low-dimensional spin systems of CuGeO3 and NaV2O5, bound states of two
elementary triplets have been observed [67, 68]. Also in SrCu2(BO3)2 several excitations
considered to be bound states of two triplets were observed in various experiments, as shown
in table 3. In inelastic neutron scattering experiments in particular these excitations show
a dispersive character contrary to the almost localized excitations observed for the lowest
branch [24]. This dispersive character can be well explained as being due to the bound states
of two-triplet excitations [58, 63, 69].

To illustrate the mechanism of bound states in the orthogonal dimer model, the effective
bosonic representation t† in terms of triplet excitations on the J bond may be useful [32, 63].
Here t is defined as

t†
x |s〉 = − 1√

2
(|↑↑〉 − |↓↓〉), (22)
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Table 3. Excited state energies above the spin gap � which are observed by various experiments.

Method Excited energies (K)

ESR [70] 54.7, 56.2, 57.1, 58.8 64.8
Neutron scattering [24] 58 113
Raman scattering [32] 43 66 81 101
Far infrared [33] 54 62 75 99 121

t†
y |s〉 = i√

2
(|↑↑〉 + |↓↓〉), (23)

t†
z |s〉 = 1√

2
(|↑↓〉 + |↓↑〉), (24)

where |s〉 is the singlet state. The effective Hamiltonian is written as

H =
∑

α=A,B

J

(
−3

4
+ t†

αtα

)
+

∑
(α,β)=〈A,B〉

J ′

2
[(eα × eβ)z{it†

α · (tβ × tα) + (h.c.)} + Tα · Tβ]

(25)

where Tα denotes the S = 1 operators. A unique geometrical property of the orthogonal dimer
model allows nontrivial two-particle hopping called correlated hopping [71, 72], which comes
from the term t†

α · (tβ × tα), but neither one-particle hopping (t†
α+xtα) nor pair creation and

annihilation of triplets. Unit vectors eA and eB are introduced to determine the sign of the
term t†

α · (tβ × tα) and are defined by eA = (1, 0, 0) and eB = (0, 1, 0). For the motion of
two triplets, matrix elements occur from the second order of the perturbation (J ′/J )2. One
example of such a process is shown in figure 18.

In the orthogonal dimer model, the lowest branch of excited states has an almost localized
nature, as emphasized before. Therefore the correlated hopping may play an important role
in contrast to the usual cases. Several works about bound states have been published to
explain the excitations observed in various experiments (table 3) [58, 63, 69]. We review the
properties of the bound states following the argument presented in [63], using the effective
Hamiltonian calculated by the perturbation [63]. However, we will skip details of the other
types of method (perturbation expansion [69] and the perturbative unitary transformation by
flow equations [58]) and only show their important results.

Collecting all two-particle processes up to (J ′/J )3, an equation for the two-particle
coherent motion is closed within the four states shown in figure 19. Two of them b(r) and
c(r) are states where two triplets exist on nearest-neighbour bonds and the others a(r) and
d(r) are those on next-nearest-neighbour bonds. These four states are decoupled from other
states where two triplets are far apart. We can introduce the pair excited states as

∑
exp(iP · ri){c1(P )a(ri) + c2(P )b(ri) + c3(P )c(ri) + c4(P )d(ri)}. (26)

Their energy spectra are calculated by diagonalizing the following 4 × 4 hopping matrix:




2� + VNNN JNN JNNeipy 0
JNN 2� + VNN J3rd −JNNe−ipx

JNNe−ipy J3rd 2� + VNN −JNN

0 −JNNeipx −JNN 2� + VNNN


 (27)
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where

VNN =
(

1

2
J ′ − (J ′)2

4J
− (J ′)3

2J 2

)
T1 · T2 −

(
(J ′)2

4J
+

(J ′)3

8J 2

)
(T1 · T2)

2 +

(
(J ′)2

J
+

(J ′)3

2J 2

)

VNNN = (J ′)3

4J 2
T1 · T2

JNN =
(

(J ′)2

4J
+

(J ′)3

4J 2

)
T1 · T2 +

(J ′)3

16J 2
(T1 · T2)

2

J3rd = (J ′)3

8J 2
T1 · T2 − (J ′)2

4J
(T1 · T2)

2 +

(
(J ′)2

2J
+

(J ′)3

4J 2

)
.

(28)

The operators T1,2 denote a spin-1 operator. � is the spin gap energy and the meaning of
the interactions VNN and VNNN and the hopping amplitudes JNN and J3rd can be read off
from figure 19. Once we have derived the third-order effective Hamiltonian (27), no further
approximation is necessary for the two-triplet motion. Diagonalizing the matrix (27), we
obtain eight branches for each total spin and some of them are stable below the two-particle
threshold. As expected from the analysis of the correlated hopping, the dispersion of the bound
state is relatively large compared with that of the single-triplet excitations. For example, the
dispersion curves with total spin S = 1 for J ′/J = 0.2 and 0.5 are shown in figure 20. (The
results for other total spins are shown in [63].) The minimum energy at (0, 0) for J ′/J � 0.425
is given by

ES1/J = 2� − J3rd + VNN, (29)

and for J ′/J � 0.425

ES1/J = 2� + 1
2 J3rd + 1

2 VNN + 1
2 VNNN − 1

2 (16J 2
NN + J 2

3rd + 2J3rdVNN

+ V 2
NN − 2J3rdVNNN − 2VNNVNNN + V 2

NNN)1/2. (30)

Branches calculated by Fukumoto and Knetter et al [58, 69] are also shown in figure 20(b).
They construct the effective Hamiltonian (27) up to fifth order and after that solve the matrix
by using perturbation calculation. For small J ′/J , for example J ′/J = 0.2, their results are
consistent with those calculated by Totsuka et al [63]. However, for large J ′/J , for example
J ′/J = 0.5, neither result is consistent with the other quantitatively. Thus, in both methods,
it is possible to describe the magnetic behaviours of the bound states qualitatively but it is
difficult to describe them quantitatively.

At the particular points (0, 0) and (π, π), Knetter et al [58] calculated the energies up to
14th order, based on the perturbative unitary transformation by flow equations. They claim
that the lowest mode at (0, 0) for S = 1 shows an instability at J ′/J = 0.63. On the other
hand, the bound state S = 0 is stable for J ′/J < 0.7. This is unusual since the binding energy
is expected to be largest for S = 0. We consider that such an instability occurs because of an
artefact of their method. In fact, such an instability has not been observed in the numerical
exact diagonalization studies for up to 24 sites.

Finally, we mention the bound state with S = 2. The bound state with S = 2 can be
stable because of the energy gain from the correlated hopping, although there are repulsive
interactions between two-triplet excitations [72]. This fact indicates that the nonplateau state
at low magnetization might be represented by a superfluid of bound states because S = 2
bound states have lower energy than twice the spin gap energy in the third-order perturbation
calculations. However, at present the features of the nonplateau state are not yet clear and
further investigations are needed.

As shown in table 3, the bound states are observed in several experimental methods. But
not all of the bound states are observable because of the selection rules, which originate from
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Figure 19. Hopping processes of two-triplet excitations and interactions between them. A (B)
dimers are shown by bold black (gray) lines. (reproduced from [63]).
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Figure 20. Triplet (S = 1) dispersion in the [1, 1, 0]- for (a) J ′/J = 0.2 and (b) J ′/J = 0.5.
Curves are the results in [63]. The branches shown by the solid curves are observable in the inelastic
neutron scattering experiment. Dashed curves in figure (b) are those in [58, 69]. For J ′/J = 0.2,
both results are consistent. It is difficult to distinguish two results and so only the results in [63]
are shown. Twice of the spin gap lies at (a) 1.912 J and (b) 1.356 J (dotted straight lines).

the unique structure of the orthogonal dimer model. Let us consider the selection rules for
a Raman scattering experiment [32, 58] and an inelastic neutron scattering experiment [63].
Finally we will comment on the selection rule for ESR [31, 65].

(1) Raman scattering experiment. In a spin system, the Raman operator obtained in second-
order perturbation theory with virtual states containing one doubly occupied site is written
as

HR =
∑

i j

(Ein · ri, j )(Eout · ri, j )si · s j , (31)

where Ein and Eout are the polarization vectors of incoming and scattered light and ri, j is the
unit vector connecting the sites i and j [74, 75]. For simplicity, the sum is taken over nearest-
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Figure 21. The orthogonal dimer model for SrCu2(BO3)2. Two types of polarization (ab) and
(a′b′) are shown by arrows. The reflection axis σ is shown by a thin line.

neighbour and next-nearest-neighbour bonds. The scattering intensity is given by Fermi’s
golden rule

I (ω) =
∑

n

|〈n|HR|〉|2δ(ω − (En − E0)), (32)

where |〉 is the ground state, |n〉 are the excited states and E0 and En are their energies. Thus
the excitations |n〉 which satisfy the condition 〈n|HR|〉 
= 0 can be observed in a Raman
scattering experiment.

Let us consider two types of polarization (ab) and (a′b′) (shown in figure 21). First of all,
the Raman operator for nearest-neighbour terms does not create excitations from the ground
state for any polarization, since the ground state is an eigenstate of

∑
〈nn〉 si · s j . On the

other hand, through the Raman operator for next-nearest-neighbours, the polarization (a′b′)
can create excitations from the ground state but the (ab) polarization cannot, as pointed out by
Knetter et al [58]. These facts originate from the parity of the Hamiltonian. Let us consider
the simplest case as in figure 6(b). In the (a′b′) polarization the Raman operator has odd parity
to the reflection of the lattice, on the other hand in the (ab) polarization it has even parity.
The singlet on a bond has odd parity. By symmetry, only the antisymmetric part of HR can
create excitations from the ground state. In fact, in Raman experiments a relatively big peak
is observed around 3.0 meV for the polarization (a′b′), which corresponds to the bound state
with S = 0, but for (ab) the intensities almost vanish [32].

From the above simple discussion, it is expected that there should be no intensity for the
polarization (ab). However, there is still a finite intensity in the experiment. In addition to this,
the spin gap, i.e. the transition �S = 1, is also observed in Raman experiments. The Raman
operator (31) allows transitions with �S = 0. These facts indicate that a mechanism beyond
the Raman operator (31) should be needed. One possible way to understand these phenomena
might be the inclusion of the Dzyaloshinsky–Moriya interaction. However, it is still an open
question whether this is sufficient or not.

(2) Inelastic neutron scattering experiment. In the inelastic neutron scattering experiment,
excited states with S = 1 are generally observed. However, only several branches of the bound
states with S = 1 are observed because of the unique structure of SrCu2(BO3)2. The Fourier
transform S j (q) of local spin operators creates single-triplet states

S j (q)|�〉 = f +
q t†

A, j |�〉 + f −
q e−i(l/2)(qx +qy)t†

B, j |�〉 (33)

over the dimer singlet ground state, where |�〉 is the ground state (5). On the symmetry
lines qx = ±qy, one of the structure factors f± = ∓i sin[l(qx ± qy)/2

√
2] vanishes and thus,

only an A(B) triplet is excited. Although only a single triplet is contained in the state (33),
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the perturbation broadens the wavefunction and S j (q)|�〉 can have a finite overlap with two-
triplet states. Since S j (qx ,±qy)|�〉 is even under the reflection σ shown in figure 21, any state
which is connected to S j (q)|�〉 by perturbation should be also even; any bound state whose
wavefunction contains ‘b’ and ‘c’ in an antisymmetric manner is orthogonal to S j (q)|�〉.
Therefore inelastic neutron experiments along the [110]([11̄0]) direction detect only bound
states shown by solid lines in figure 20. Qualitative features agree well with the dispersion
observed in the experiment [24].

To compare with experimental results quantitatively, the dynamical structure factor
S(q, ω) was calculated by using exact diagonalizations [73]. The dynamical structure factor
S(q, ω) at T = 0 is defined by

S(q, ω) =
∑

n

|〈n|Sz(q)|�〉|2δ(ω − En + E0), (34)

where |n〉 are the excited states, En their energies and E0 is the ground state energy. The spin
density operator Sz(q) is defined by Sz(q) = 1√

N

∑
i eiq·ri Sz

i . S(q, ω), which is explicitly
expressed in terms of the continued fraction

S(q, ω) = − 1

π
Im

〈�|Sz†
q Sz

q |�〉
z − a0 − b2

1
z−a1−···

, (35)

can be calculated directly by the Lanczos method. Here z = ω + E0 + iε. For the fit we use
ε = 0.1 as the damping constant. The results for N = 24 at q = (2π, 2π) with J = 85 K
and J ′ = 54 K are shown in figure 22. The result agrees well with the experimental results.
As a reference, the results for N = 20 and 24 with ε = 0.01 are also shown. The first big
peak at 3 meV (35 K) is due to the spin gap excitation. It hardly depends on the system size
because of its localized nature. The second peak exists around 60 K. It corresponds to the
excitation which is observed around 5 meV (58 K) in the experiment. We conclude that the
main contribution to this excitation is due to the bound states of two triplets. The bound states
have a dispersive character as shown in figure 15 and this is indeed revealed in the inelastic
neutron scattering experiment as a considerable width of the second peak.

Finally we comment on the excitations around 9 meV (104 K). They consist of many
peaks and their origin is not yet clear [24]. We only mention that there are three possibilities:
(i) (anti) bound states of two triplets, (ii) continuum of two or more triplets and (iii) bound
states of three triplets.

Recently, a neutron scattering experiment with high resolution (the same resolution as
in [65]) was done for the bound states [76]. The experimental results are consistent with those
of ESR [70] and several excited states are observable. The origin of each peak is not yet clear
and the effect of the Dzyaloshinsky–Moriya interaction might be important in explaining some
of these results like the splitting of the lowest branch of the excitations.

(3) ESR. ESR is an important experimental method to investigate magnetic excitations. In
particular it is useful for studying the external magnetic field dependence of the magnetic
excitations, since it is possible to measure an ESR signal in high magnetic fields. The critical
field for SrCu2(BO3)2 is above 20 T and thus methods for measuring magnetic excitations
in such high fields are limited. Nojiri et al [31, 70, 77, 78] observed magnetic excitations
using ESR up to 55 T and found many excitations. However, the theory of ESR in quantum
spin systems is not fully developed yet, especially in the case where quantum fluctuations are
important [79]. Further theoretical developments are necessary to analyse the results of ESR
completely. Here we briefly describe several possible scenarios.
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Figure 22. Theoretical result of S((2π, 2π), ω) is compared with the experimental results. The
results for N = 20 and 24 with ε = 0.01 are also shown (reproduced from [73]).

In principle, ESR can observe the transitions satisfying the condition �S = 0 and
�Sz = ±1 in spin systems. However, in SrCu2(BO3)2 transitions from the singlet ground state
to the excited triplet states were observed [31]. As indicated by Nojiri et al, some mechanism
which breaks the rotational symmetry of the spin space like Dzyaloshinsky–Moriya interaction,
nonequivalent g-tensors or anisotropic exchange interaction is necessary to make the transition
observable.

However, Cépas et al [65] pointed out that the Dzyaloshinsky–Moriya interaction or
anisotropic exchange interaction alone cannot explain the transition because of symmetry.
Also they mentioned that with the anisotropy of the g-tensors or with both the Dzyaloshinsky–
Moriya interaction and an anisotropic exchange interaction the transition is possible in principle
but should be very small. They proposed electric dipole transition by a phonon assisted
mechanism to be the origin of the observed transition. They calculated the effective operator
HE S R treating the spin–phonon interaction λ perturbatively in a purely electronic mechanism.
The effective operator is written as HE S R = ∑

nn γ si · s j + η · (si × s j ): the first term is a
transition via a virtual phonon as an intermediate state and the second occurs from a spin–orbit
coupling λ. Here |η| ∼ λγ . This effective operator gives an intensity proportional to η2, which
might be consistent with the experiment results.

At this stage, electric dipole transition is suggested as the possible origin of the ESR
transition. However, the mechanism of the transition is not yet clear and further investigation
is needed.

5. Estimation of the coupling constants for SrCu2(BO3)2—thermodynamic properties

In this section, we will discuss an optimal set of coupling constants for SrCu2(BO3)2 by fitting
various thermodynamic properties.

As shown in section 4.1, the lowest triplet excitations have an almost flat band. Therefore
it is difficult to determine both J and J ′ only from the dispersion relation of the lowest excited
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Figure 23. The temperature dependence of the magnetic susceptibility T < 30 K. The results
with the parameters J = 72 K for J ′/J = 0.62, J = 88 K for J ′/J = 0.64, and J = 104 K for
J ′/J = 0.66 are shown by the full symbols. The results with the optimal set J ′/J = 0.635 and
J = 85 K are shown by the open symbols (reproduced from [60]).

states observed in inelastic neutron scattering experiments, in contrast to usual spin systems.
One of the possible ways to estimate the parameters is to fit the temperature dependence of the
magnetic susceptibility [60]. For a given ratio of J ′/J , the value of J is determined so that
the spin gap obtained from the exact diagonalization is 35 K. For the estimation of the spin
gap, a system with N = 24 spins is sufficient. Temperature dependence of the susceptibility
is calculated by using the transfer matrix method for finite clusters. In figure 23, calculated
results of χ2d(J ′/J ) for the system with N = 16 spins are compared with experimental results
for various J ′/J = 0.62, 0.635, 0.64, 0.66. The best fit is obtained for J ′/J = 0.635 and
J = 85 K. It should be noted that the series expansion up to 25th order [54] gives a spin gap of
34.3 K, which is consistent with the observed spin gap. To check the finite size effect for this
set of parameters, the result for N = 20 is also shown in figure 23. In the present system, the
finite size effect is not so important since the lowest branch of the triplet excitations is almost
localized.

However, the temperature dependence of the calculated susceptibility for this set of
parameters does not fit the experimental results well at T > �. This fact suggests that
the effects of the interlayer coupling J ′′ (figure 7) on the susceptibility cannot be neglected in
such a high temperature range as discussed in section 4.1. To see the effects of the interlayer
coupling, we assume the mean-field type scaling ansatz used in [80]:

χ(J ′/J, J ′′/J ) = χ2d(J ′/J )

1 + 4J ′′χ2d(J ′/J )
. (36)

The coefficient 4J ′′ in the denominator reproduces correctly the high-temperature Weiss
constant of the three-dimensional model. At low temperatures this ansatz gives the same
spin gap as that given by the two-dimensional model, which is reasonable because the spin
gap is not modified by J ′′. From the fitting at T > �, J ′′/J = 0.09 is obtained as the best
choice. The result of the fitting is shown in figure 2.
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Figure 24. The temperature dependence of the specific heat T < 30 K.The results with the
parameters J = 72 K for J ′/J = 0.62, J = 88 K for J ′/J = 0.64, and J = 104 K for
J ′/J = 0.66 are shown by the thin curves. The results with the optimal set J ′/J = 0.635 and
J = 85 K are shown by the solid curve (reproduced from [60]).

Strictly speaking, two different types of interlayer interaction J ′′
1 and J ′′

2 are necessary
at T < 395 K because of the buckling of the CuBO3 plane (see figure 5(a)). In the mean-
field type approximation, J ′′/J estimated in this way gives the average value of the interlayer
couplings. It is difficult to estimate the coupling constants beyond the mean field level.

These parameters J = 85 K and J ′ = 54 K can also reproduce the temperature dependence
of the specific heat of SrCu2(BO3)2 at low temperatures T < 15 K [30, 81] as shown in
figure 24 [60] and the excitations observed by inelastic neutron scattering as shown in figure 15
and 22 [63, 73]. In figure 24, the phonon term β × T 3, where β = 0.4 mJ K−4, has been
assumed. At temperatures T > 15 K, a good quality of the fits is not obtained. Possible reasons
for this difference may be the following: (i) the simple β × T 3 expression is not sufficient
for the lattice contribution; (ii) the effects of the spin–phonon coupling are important. In the
orthogonal dimer model, the small kinetic energies of the excited triplets originate from the
geometrical constraint. When the orthogonality is broken by some distortion of dimer bonds,
a finite matrix element for the hopping of a triplet arises. Therefore a triplet excitation is
expected to be strongly coupled with phonons.

Finally, we comment on various choices of coupling constants. Initially, and then
frequently, J ′/J = 0.68 and J = 100 K were used as the optimal values for SrCu2(BO3)2 [35].
However, these parameters are estimated from the experimental results of the powder sample
with the spin gap 30 K, which is smaller than the intrinsic value of 35 K. Another set
J ′/J = 0.603, J ′′/J = 0.21 and J = 71 K (6.16 meV) was proposed by Knetter et al [58]
from the bound state energies of the two-triplet excitations. This set of parameters, however,
does not reproduce the temperature dependence of the magnetic susceptibility at T < � as
shown in figure 23. Thus we conclude that the parameter J ′/J = 0.635 is the optimal set for
this material, better than J ′/J = 0.68 and 0.603.
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6. Magnetization

One of the most remarkable experiments on SrCu2(BO3)2 is the observation of magnetization
plateaux at 1/8, 1/4 and 1/3 of the full Cu2+ moment (figure 3) [22, 25, 26].

The triplet excitations in this system have a very small kinetic energy, as already
stressed. Applying an external magnetic field, we change the density of triplets. In general,
there is competition between the kinetic energy of the excited triplets and the repulsive
interaction energy between the triplets. At certain densities, i.e. magnetizations where the
commensurability energy is significant, it is natural to expect that the crystallization of the
triplet excitations, leading to a finite energy gap and a magnetization plateau, is particularly
favourable.

6.1. Effective hard-core boson model

The appearance of plateaux in one-dimensional models has been discussed from the view point
of metal–insulator transitions of the magnetic excitations tuned by the magnetic field [15].
However, this scenario is not limited to one-dimensional systems and also applies to two- and
three-dimensional systems [71, 82, 83]. The magnetization of SrCu2(BO3)2 is also explained
well in this point of view [71, 72, 84–87]. In the orthogonal dimer model, the excited triplets
can be treated as particles in a sea of singlets. Under the magnetic field, it may be a good
starting point to keep only two states for each nearest-neighbour bond, the singlet and the
lowest triplet, as the physical degrees of freedom. By considering the triplet with Sz = 1 as a
hard-core boson (ni = 1) and the singlet as a vacancy (ni = 0), the effective hard-core boson
Hamiltonian is derived by the perturbation calculation from the limit J ′/J � 1. The model
is written as

He f f = Hc + Hk + Hch + Hi = µ
∑

i

ni +
∑

i j

ti j(c
†
i c j + h.c.) +

∑
i jk

tch
i jk(c

†
i c j + h.c.)nk

+
∑

i j

V (ri − r j )ni n j (37)

where c†
i (ci ) creates (annihilates) a magnetic excitation at bond i , and ni = c†

i ci is the number
operator. µ is the chemical potential for bosons which is nothing but the external magnetic
field, H , in the original model. In the first line, Hk means the hopping term and Hch the
correlated hopping term. The correlated hopping plays an important role for the bound states
of two-triplet excitations as we discussed in section 4.2. Hi represents interactions between
two triplets. The interactions up to third-order are written as

V1

J
= 1

2

J ′

J
+

1

2

(
J ′

J

)2

− 1

8

(
J ′

J

)3

, (38)

V2

J
= 1

4

(
J ′

J

)3

, (39)

V3

J
= 1

2

(
J ′

J

)2

+
3

4

(
J ′

J

)3

, (40)

V ′
3

J
= 0, (41)

where Vn represents the interaction between the nth-nearest-neighbour pair of dimers (see
figure 26). The interactions for n = 3 depend strongly on direction. For a pair of parallel
dimer bonds the interaction V3 starts from second-order corrections, while that between the
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Figure 25. Mapping the orthogonal dimer Heisenberg model to a hard-core boson model on the
interpenetrating two square lattices, one for vertical dimers (shown by squares) and the other for
horizontal dimers (shown by circles). The singlet states are represented by open symbols and the
Sz = 1 triplet states by full symbols.
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Figure 26. Interactions between the triplet excitations. The nearest-neighbour interaction V1, the
next-nearest-neighbour interaction V2 and the third-nearest-neighbour interactions V3 and V ′

3 are
shown (reproduced from [84]).

dimer bonds on a straight line V ′
3 vanishes in low-order perturbations. In addition to that, V3 is

lager than V2 for any J ′/J . These features are characteristic of the geometry of the orthogonal
dimer system. Since the kinetic energy of one particleHk is much smaller than the other terms,
the correlated hopping energies Hch and the interaction energies Hi , we may neglect this term
to a first approximation.

Momoi and Totsuka [71, 72] have derived the effective Hamiltonian up to third order of
J ′/J . Its complete form is shown in [72]. In this order one-particle hopping terms do not appear
and thus the competition is only between repulsive interactions and correlated hopping. To
treat these effects, they map the hard-core boson system onto an S = 1/2 pseudo spin system.
Then the quantum pseudo spin operators are approximated by classical vectors with fixed
length. The ground state of finite size systems is obtained both by a mean-field approximation
and by Monte Carlo sampling. In the latter method, the temperature is gradually decreased
towards zero. In the evaluated magnetization, plateaux are observed at m = 1/2 and 1/3 but
not at m = 1/4 and 1/8.

The classical pseudo spin configuration can be mapped onto the original S = 1/2
configuration (details are in [72]). The plateau states at m = 1/2 and 1/3 have density-
wave long-range order with checkerboard and stripe structures respectively. The results are
summarized in the phase diagram of figure 27. Notice that the plateau at 1/2 is stable only in
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Figure 27. Phase diagram at T = 0 with the parameter J ′/J and the magnetic field B/J
(reproduced from [72]).

the region 0 < J ′/J < 0.50. For large J ′/J , the correlated hopping makes the superstructure
unstable; however, the phase boundary might move to larger parameters due to quantum effects
in the original spin model.

In the analysis by Momoi and Totsuka, there are no plateaux at 1/4 and 1/8. This fact
indicates that the interactions determined by the perturbation theory up to third-order are
not sufficient to reproduce the 1/4 and 1/8 plateaux. This conclusion is supported by exact
diagonalization studies in finite systems [84]. The magnetization curve for a 16-site cluster is
calculated for both J ′/J = 0.4 and 0.635. The 1/8 plateau is obtained only for J ′/J = 0.635
but not for J ′/J = 0.4.

To include long-range repulsive interactions, we assume interactions with Yukawa
form [84]. By the string effect discussed in section 4.1, the wavefunction of a triplet excitation
is expected to have an exponential tail. Thus it is natural to assume interactions between two
triplets with exponential form. As a working hypothesis we assume the following form for the
interactions,

V (r) =



Vn(V ′
n) (n = 1, 2, 3)

V0
exp(−r/ξ)

r
(others).

Concerning the short-range interactions we fixed the ratios V2/V1 and V3/V1 using the
perturbation results and the parameters V0/V1 and ξ are determined to reproduce the results
of exact diagonalizations for J ′/J = 0.635. The kinetic term and correlated hopping term are
neglected: the former is small in the perturbation results and the latter may be negligible
for small densities of triplet excitations. When the kinetic energies are neglected, it is
straightforward to calculate the energy of every state with a fixed density of triplets, i.e. at
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a certain magnetization, once the distribution of the bosons is specified,

Ei =
∑

q

Vqnq n−q , (42)

where nq and Vq are the Fourier components of the distribution of bosons and the interactions,
respectively. We have considered periodic boundary conditions for the distributions of triplet
excitations with various unit cells. For each unit cell, all possible configurations are generated
and their energies are calculated. In this way, the lowest-energy states are determined for all
Sz . The unit cells used are Nd = 16, 20, 26, 32, 36 with square unit cells and Nd = 24, 32
with rectangular cells. Here, Nd means the number of dimer bonds in each unit cell.

The magnetization curve thus obtained is shown in figure 28. In this calculation, the
curve consists of many steps. When a kinetic energy is included small steps will be smeared
out and only large steps will survive as plateaux. As possible plateaux, distinct structures of
magnetization are seen at 1/2, 1/3, 1/4 and 1/8. At the same time, the classical solution for the
hard-core boson model gives possible superstructures. The superstructures at these plateaux
are also shown in figure 28. The structures at 1/2 and 1/3 are the same as those obtained
by Momoi and Totsuka (figure 27). The plateau at 1/4 is also characterized by stripe order.
The 1/8 plateau has a rhomboid unit cell. A square unit cell was also proposed for the 1/8
plateau because of the high symmetry [35, 84]. However, recent NMR experiments indicate
that a rhomboid cell is realized [28], which will be discussed in section 6.3. One may think
that these structures appear because of our classical approximation. However, the spin–spin
correlation functions for a finite system in the original Heisenberg model are compatible with
the simple structures shown in the figure. Details of the calculation and a comparison with the
classical solutions are discussed in [84].

Another approach based on the hard-core boson effective model was followed by
Fukumoto and Oguchi. They carried out a partial diagonalization of the effective
Hamiltonian [86, 87]. In first order of the perturbation, only the interaction V1 exists and
there is no flip part. Therefore the lowest eigenvalue of the effective Hamiltonian is zero for
0 � m � 1/2. In this range of magnetization, the lowest-energy states have no nearest-
neighbour triplet dimer pairs and therefore the states with nearest-neighbour triplet dimer
pairs might be neglected. In this assumption, they partially diagonalize the third-order effective
Hamiltonian within the configurations where there are no nearest-neighbour triplet dimer states
and diagonalize the various finite size clusters with periodic boundary conditions: ND = 8,
10, 12, and 36 where ND is the number of dimer bonds. They observed the 1/3 plateau, and
the configuration at the plateau is a stripe state of triplets. This is consistent with the previous
two results.

To study the plateaux at m < 1/3, Fukumoto [87] constructed the effective model up
to the fourth-order perturbation in the subspace without nearest-neighbour and one type of
third-neighbour (V3) triplet pairs. Within these restricted states, the term of the next-nearest-
neighbour interaction cancels the correlated hopping term in the second order of the effective
model (details are in [87]). The higher-order correlated hopping terms remain. However, they
neglected the effects of the correlated hopping with the hope that the energy gained due to them
is small. The Hamiltonian is diagonalized for various finite-size clusters up to ND = 48. The
results indicate the presence of the 1/4 plateau and its structure is a stripe state, which agrees
with the result in [84]. In this effective Hamiltonian, there is a fourth-neighbour interaction
V4, which is responsible for the 1/4 plateau.
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Figure 28. The magnetization curve and the structures at the plateaux. Here the triplet excitations
are shown by full symbols and the singlets by the open symbols.

6.2. Chern–Simons theory

In the previous sections, the hard-core bosons, which describe the excited triplets, were used
to discuss the magnetization. In this section, we follow the argument presented in [88, 89].
Let us consider the mapping from the spin operators to hard-core boson operators:

s+
i = b†

i , (43)

s−
i = bi , (44)

b†
i bi = sz

i + 1/2. (45)

The original spin Hamiltonian is rewritten using the hard-core boson operators:

H = 1
2

∑
nn

J (b†
i b j + b†

j bi) + 1
2

∑
nn

J (ni − 1/2)(n j − 1/2)

+ 1
2

∑
nnn

J ′(b†
i b j + b†

j bi) + 1
2

∑
nnn

J (ni − 1/2)(n j − 1/2), (46)

where ni = b†
i bi is the occupation number of site i . The hard-core constraint is taken into

account exactly by further mapping from the hard-core bosons onto spinless fermions coupled
to a Chern–Simons gauge field:

b†
i = s+

i = eiαi f †
i , (47)
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Figure 29. Phase diagram with the parameter J/J ′ and magnetic field B/J ′ (reproduced from [88]).

bi = s−
i = fi e

−iαi . (48)

In a mean-field approximation, the gauge field is replaced by its static mean value. The flux
per square plaquette φ is tied to the density of fermions: the magnetization of the spin system
M , since it comes from the flux tubes initially attached to each fermion

φ

2π
= 〈n〉 =

(
〈Sz〉 +

1

2

)
= M +

1

2
. (49)

The Ising term in (46) takes a simple form in the mean-field decoupling and thus it becomes a
simple function of the magnetization. On the other hand, the kinetic energy term in (46) leads
to a Hofstadter problem. However, it is straightforward to calculate this term, since this is a
one-body problem. On each triangular plaquette, flux φ/2 are attached.

Equation (49) for a certain value of magnetization M defines the flux and the number of
fermions. The total energy E(M) is given by filling the band spectrum from the bottom with
an appropriate number of fermions and adding the contribution from the Ising terms. After
that, minimization E(M) − B M leads to the magnetization as a function of B .

The results are summarized in figure 29 and 1/2, 1/3 and 1/4 plateaux are stable.
These plateaux are also observed in the effective hard-core boson models. In Chern–Simons
mean-field theory, the plateau phases are still stable in the plaquette dimer singlet state
1.16 < J/J ′ < 1.47 (0.68 < J ′/J < 0.86) and the antiferromagnetic phase J/J ′ < 1.16
(J ′/J > 0.86). In these parameter ranges, the hard-core boson models are not reliable and
the present result may be considered as the first indication of the existence of plateaux in
the intermediate phase. However, the spin gap in the antiferromagnetic phase may be an
artefact due to the fact that the Néel state is not correctly described in the uniform mean-field
approximation, as pointed out in [90]. Therefore it is necessary to compute nonuniform
solutions of the mean-field Chern–Simons approach with two sublattices to conclude the
existence of plateaux beyond the critical point.

Finally, it should be mentioned that Misguich et al [88] reproduced the qualitative shape
of the experimental magnetization curve for SrCu2(BO3)2 with J = 71 K and J ′ = 43 K with
a good agreement between 25 and 50 T and predicted the 1/2 plateau beginning at 60 T. But
recent experiments show that the 1/3 plateau is stable up to 70 T at least (see figure 3) [26].
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6.3. Spin–lattice interactions at plateau

Calculations using the effective hard-core boson model predict a superstructure accompanied
with a breaking of translational symmetry at magnetizations 1/8, 1/4 and 1/3. Recently
Kodama et al [28] succeeded in performing NMR measurements at the 1/8 plateau. The
frequency pattern of the NMR indicates that below the critical field for the 1/8 plateau the spin
state is uniform. On the other hand, at the 1/8 plateau, several different spin sites have been
identified. This is a direct observation of the breaking of translational symmetry. However, the
very rich texture of the magnetization observed in the NMR experiments cannot be reproduced
within the hard-core boson model approximation, where there are only two different spin sites.
Therefore one has to go back to the original spin Hamiltonian. The presence of the 1/8 plateau
is expected to lead to a breaking of the lattice symmetry and to degenerate ground states in the
thermodynamic limit. One way to select a unique ground state would be to couple the system
to the lattice as in the Jahn–Teller effect [91]. Actually, sound velocity experiments have
revealed anomalies in the elastic constants upon entering the magnetization plateaux [92–94].

Miyahara and colleagues [28, 95] have considered the effects of adiabatic phonons. The
Hamiltonian is defined by

H =
∑
(nn)

J (di j)Si · S j +
∑
(nnn)

J ′(di j)Si · S j

+
K

2

∑
(nn)

(‖δri − δr j‖
d0

i j

)2

+
K ′

2

∑
(nnn)

(‖δri − δr j‖
d0

i j

)2

.

For small displacements of the copper atoms, it is possible to linearize the antiferromagnetic
couplings around the equilibrium values:

J (di j) = J

(
d0

i j

di j

)α ∼= J

[
1 − α

δdi j

d0
i j

]
, (50)

J ′(di j) = J ′
(

d0
i j

di j

)α′
∼= J ′

[
1 − α′ δdi j

d0
i j

]
. (51)

The parameters α and α′ are related to the derivative of the superexchange couplings
with respect to the relative distance. They have studied the Hamiltonian (50) by exact
diagonalization on finite clusters with the Lanczos algorithm. As mentioned in section 6.1,
two possible unit cells (square and rhomboid unit cell) are proposed for the description of the
1/8 plateau in the hard-core boson model. The configuration with both unit cells has been
calculated and the results for J = 85 K, J ′ = 54 K, α = α′ = 7 and K = K ′ = 20 000 K
are sketched in figure 30. The square unit cell has six different sites, while the rhomboid has
eight different sites. In both cases, the magnetization is centred around one strongly polarized
dimer, with Friedel-like oscillations with alternately positive and negative magnetizations.
These oscillations decay quite fast, and away from the central dimer the magnetization is very
small. Therefore the finite size effects are expected to be very small and the 16-site cluster
calculations to be quite a good approximation. Including the effect of the interlayer couplings,
14 sites are expected for the rhomboid cell. On the other hand, the interlayer couplings do not
change the number of nonequivalent sites in the square unit cell assuming the triplet to be as
far as possible in different layers. In the NMR data at least 11 different sites were identified.
Therefore we expect the rhomboid cell to be realized at the 1/8 plateau.
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Figure 30. (a) Schematic distribution of magnetic moments at the 1/8 plateau for a square unit
cell and (b) for a rhomboid unit cell. Full circles reveal the positive 〈Sz〉 sites and open circles the
negative. Radii represent the magnitude of 〈Sz〉.

7. Conclusions

Low-dimensional spin systems have been studied intensively for a long time and many
theoretical models, for example chain, zig-zag chain, ladder and others, have been considered.
In the early stage of the investigations actual realizations for such models were very limited.
However, thanks to the recent endeavours of chemists and experimentalists,many real materials
whose behaviours are well explained by these simple models have been synthesized and
have provided several interesting experimental results, which have in turn stimulated further
theoretical development. SrCu2(BO3)2 is one of the most fascinating examples. Over 20 years
ago, Shastry and Sutherland found a two-dimensional model which has an exact ground state.
But further theoretical developments of the model were not achieved for a long time. However,
since the work of Kageyama et al on SrCu2(BO3)2, many experimental and theoretical works
have been developed as summarized in table 4. Through such works, many interesting
phenomena, for example magnetization plateaux,have been found and convincing explanations
given. In this way theories for this system have been developed by stimulations from the
experiments and vice versa.

In this review, we have attempted to give an overview of the recent developments
concerning the two-dimensional orthogonal dimer model of SrCu2(BO3)2. The main
conclusions are the following:

(i) In the two-dimensional orthogonal dimer model, the orthogonality of the dimer bonds
plays an essential role. The exact dimer singlet ground state found by Shastry and
Sutherland originates from this orthogonality. Such a point of view makes it easy to
extend the dimer singlet ground state to other dimensions. The most remarkable fact is
that the realistic three-dimensional model which corresponds to SrCu2(BO3)2 has a dimer
singlet ground state. Also the orthogonality is the origin of the almost localized nature
of the triplet excitations. This property leads to the crystallization of triplet excitations at
certain densities of the triplet excitations, which explains the magnetization plateaux at
the corresponding magnetizations.

(ii) In the two-dimensional orthogonal dimer model, there is a quantum phase transition from
the dimer singlet state to the antiferromagnetically ordered state. The plaquette singlet
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Table 4. Theories on two-dimensional orthogonal dimer models and main phenomena discussed
by them. Also the related section is indicated.

Method Phenomenon Section

Exact solution [36, 37] Dimer singlet ground state 3.1
Schwinger boson mean field theory [49] Quantum phase transitions 3.2.1
Exact diagonalization [35] Quantum phase transitions 3.2.1
Series expansions [39, 46, 51, 54, 59] Quantum phase transitions 3.2
Large-N limit with Sp(2N) symmetry [50] Quantum phase transitions 3.2.1
Field theory [53] Quantum phase transitions 3.2.1
Dimer and quadrumer boson [52] Quantum phase transitions 3.2.1
Perturbation calculation (J ′/J � 1) [35] Almost localized triplet 4.1
Exact diagonalization [35] Almost localized triplet 4.1
Series expansion [46] Almost localized triplet 4.1
Perturbative unitary transformation [58] Almost localized triplet 4.1
Perturbation calculation (D/J � 1) [65] Effect of DM interaction 4.1
Effective bosonic model [32] Bound state of two triplets 4.2
Perturbation calculation (J ′/J � 1) [63, 69] Bound state of two triplets 4.2
Perturbative unitary transformation [58] Bound state of two triplets 4.2
Exact diagonalization [63, 73] Bound state of two triplets 4.2
Transfer matrix method [60] Thermodynamic properties 5
Hard-core boson method [71, 72, 84, 86, 87] Magnetization plateaux 6.1
Exact diagonalization [35] Magnetization plateaux 6.1
Chern–Simons theory [88, 89] Magnetization plateaux 6.2
Exact diagonalization [28, 95] Effect of spin–phonon coupling 6.3

state probably exists between the two phases. A definitive conclusion about the third
phase is still awaited.

(iii) The lowest branch of the triplet excitations is almost localized. Notice that the spin
gap is not affected by the interlayer coupling J ′′ and the triplet excitations are localized
along the c-axis direction. Therefore the low-temperature thermodynamic properties
of SrCu2(BO3)2 are well described by using the two-dimensional model as the first
approximation, not because of the weakness of the interlayer coupling J ′′ but for
geometrical reasons. Concerning the coupling constants J , J ′, and J ′′, the best fit for
thermodynamic properties is obtained by J = 85 K, J ′ = 54 K and J ′′ = 8 K. These
parameters show that SrCu2(BO3)2 is located near the quantum phase transition point. The
unusual temperature dependence of the susceptibility is a consequence of the closeness to
the transition point.

(iv) There is a tendency for two-triplet excitations to make a bound state. Such a bound state
hops more easily than the single-triplet excitations. The bound states are observed in
many experiments and they are explained well by the theory, especially the results of the
inelastic neutron scattering experiments. On the other hand, the selection rules for Raman
and ESR experiments require further investigation.

(v) The almost localized triplet excitations can easily form regular lattices under certain
magnetic fields. The commensurability energy associated with the superstructures leads
to plateaux in the magnetization curve at 1/2, 1/3, 1/4 and 1/8 of the full moment. We
would like to point out that SrCu2(BO3)2 is the first example where magnetization plateaux
accompanied by a lowering of the translational symmetry are observed.

(vi) We mention the importance of the coupling between spins and phonons. The spin–
phonon interaction may be one of the interesting phenomena for SrCu2(BO3)2. In the
orthogonal dimer model, a finite matrix element for the hopping of a triplet arises when
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the orthogonality is broken by some distortion of dimer bonds. This suggests that a triplet
excitation has a strong coupling with phonons. In fact, the spin–phonon coupling is useful
to lift up the degeneracy at magnetization plateaux.

Finally we point out the open issues related to SrCu2(BO3)2:

(i) As mentioned in summary (ii) above, the properties of the intermediate phase of the
orthogonal dimer model are not yet clear. Further investigation is required.

(ii) In this system, selection rules for Raman and ESR experiments are not yet clear. For
ESR in particular the general theory in quantum spin systems is very limited. Since it is
possible to measure an ESR signal in a high magnetic field with high accuracy, theoretical
developments are necessary not only in this system but also in general quantum spin
systems.

(iii) As proposed in [72], the nonplateau state at low magnetization might be a superfluid of
bound states of two-triplet excitations. However, the features of the state at the nonplateau
phase are not yet clear and further analysis of this state is required.

(iv) So far the 1/8 plateau has been found only by phenomenological treatment. In that sense,
the mechanism of stabilizing this plateau is not yet clear, although it is likely that this
plateau stabilizes because of the long-range interactions.

(v) In the magnetization curve there are transitions from a plateau phase to a nonplateau phase.
However, the order of the transition, first or second, is not clear. Also finite-temperature
phase transitions in the plateau phases are expected and the order of such a phase transition
is not yet known.

(vi) There is a possibility that spin–phonon coupling may play an important role in helping us
understand various properties of this system. For example, the finite magnetization below
the critical field (figure 3) and the discrepancy between the theory and the experiments for
specific heat at T � 15 K may be understood using spin–phonon coupling.
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